»Advanced Materials« Enabler for new Innovations

"Around 70 percent of all new products are based on new materials and processes."

Prof. Hartwig Höcker RWTH Aachen University

"The technical progress in key fields depends on successful material developments."

> Dr. Peter Schepp Senior Experten Service (SES)

Join the consortium to ...

discover new Advanced Materials and their **potential impact** on exciting new products:

- Receive a structured overview of both mature and new, innovative materials like nanomaterials, smart materials, composites, alloys and many more
- Get detailed material studies including the assessment of processability and development potential for selected materials
- Learn about potential applications and benefit from roadmaps for advanced materials
- Network with key players and technology experts along the value chain in order to learn about current needs and focused cross-industrial applications

Your Contact: Patrick Neudegger Phone: +49 (0)241 51038 613 Email: <u>patrick.neudegger@kex-ag.com</u>

May 2018

April 2019

Costs: € 25,000

Start:

End:

Motivation

Key Questions

Advanced Materials Scope

Observation fields

Material Types Exemplary Materials

Extract of Addressed Markets in This Project

Knowledge Exchange®

Project Timeline

Stage 1 Content:

- Segmentation of material types and functions
- Scanning & Scouting for different advanced materials where hidden potentials are expected
- Pre-evaluation of materials based on criteria defined by the consortium
- Result: Detailed overview in "material performance trees"
- → Information basis for material selection for <u>Stage 2</u>

Stage 2 Content:

- Systematic selection of attractive materials and specific questions by the project partners
- Detailed material studies for each selected material and question
- Assessment of processability and development potential
- Identification of relevant research facilities (science, industry)
- ➔ Information basis for your selection of relevant focus cases in <u>Stage 3</u>

Stage 3 Content:

- Identification of attractive applications in different industries for selected materials
- Evaluation of these applications regarding advantages, disadvantages and a cost analyses if practicable
- Derivation and development of application-related roadmaps for selected materials
- ➔ Information basis for partner-specific roadmaps/decisions

Expected Results for the Different Stages Exemplary Outlook

Material performance trees:

- Structured and detailed information about identified materials regarding material type and material functions
- Pre-evaluation for materials based on defined criteria

Expert landscape:

 List of relevant research facilities (science, industry)

Material Analyses:

Detailed information about materials that have been selected after stage 1 from the consortium

Applications:

 List and assessment of applications manufactured using the selected materials. Applications of partners are considered

Roadmaps:

Definition of application-related roadmaps for the selected materials

Proceeding – Exemplary Outlook Stage 1: Pilot Study

Knowledge Exchange[®]

Material Segmentation

- Selection of focus areas based on consortium preferences (questionnaire) and major trends
- Systematic overview on material segments and structure within the focus areas

Detailed Segment Analysis

 Derivation of major challenges within these sub-segments in order to enable a focused selection of growing or currently developing material opportunities

»Material performance Tree«

- A structured and detailed overview of upcoming trends and latest developments in the field of Advanced Materials will be presented in material performance trees to the consortium during the 1st report meeting
- The trees are divided in the segments material types (metal, polymer, etc.) and the sub-segments material functions (lightweight, high temperature, etc.)
- A pre-evaluation of identified materials regarding criteria defined by the consortium (e.g. cost factor, readiness level and innovation potential)
- Information basis for material selection for Stage 2

Proceeding – Exemplary Outlook Stage 2: Detailed Material Studies

Knowledge Exchange[®]

Expert landscape

- Identification of relevant research facilities (science, industry) conducting research and development in the field of the selected materials
- Determination of potential partners

Detailed Material Analyses

- Assessment of processability, development and innovation potential, cost structure and technological readiness level for selected materials
- Current pros and cons of different materials and its development potential in the next years
- Examination whether the properties of the material match the requirements of the industrial environment
- Executive summary for a quick evaluation
- Information basis for selection of relevant focus cases in Stage 3

Proceeding – Exemplary Outlook Stage 3: Applications & Roadmaps

* 10 Careerona	and united		Print	ed Houses	Printed Facilites
PROTOTYPES	S TOCCING & REPAIR			•	
Automotive	High perform	INDUSTRIAL TOOLING & REPAIR	Specialized Customized Spare date trained plints concrete parts & hon	1 Mobile Pre les factories	fab (Sinekers on extra Sinekers on extra temestal resource)
Energy Automotive		High perform components	ance Customized Spec	alized Customized parts exterior parts	
Consumer 8	N.	Special Spa Repair	vidualized Hydraulic Printer reparts of 6 (ten) components batterie	Turbine components will improved cooling bolding parts, whice Aerospace)	h
Electronics	Lig con tree	Individualized design products (Casings & Jewillery)	Food & Individual Inter confec- toys & Printed electronery furniture LEDs & s	egrated Printed tronics complex ensors circuitry	anufacturing
Aerospace Consumer & Electronics Hearing aid D buds	L Der tal projvins	Lightweight components	Propulsion components s.p. Fuel Nozzle component	Printed sensors Adaptive (p, T, etc.) large bod	surfaces & Orbital manufacturing y parts plants (spixetat)
Medical Menalt	Hearingaid De	ntal Mouth- Sur	gical Minimal invasive Me	edicated Printed body	• Printed organs
Design Tr	rot type	owns guards Mod	Nes surgery equipment pr		(Texat), Ever, Addrey)
Industrial Teoling & Rebotics	Visual/ Pun Design pro	Individual prosthese industrial totyping tooling	Individual Implants (skul, knie, hp) Grippers	a 1)	2050
Industrial Tecling & Babalice	Wototyping	Tool Repair Fixture	*		AVMY.
	2000	2010	2020	2030	2040 2050

Knowledge Exchange[®]

Applications & Roadmaps

- Identification of suitable applications regarding the chosen materials and classification of these applications into the respective industry
- Evaluation of these applications regarding advantages, disadvantages and a cost analyses
- Definition of application and development roadmaps for the selected materials
- Information basis for partner-specific roadmaps/ decisions for internal projects and implementation

Project References

Knowledge Exchange[®]

Consortium Project Framework:

- Result generation by research partners (Fraunhofer IPT, ACAM, KEX)
- Face-to-face results presentation and discussion with industrial consortium partners
- Moderated cross-industrial workshops and expert key note speeches
- Networking with a cross-industrial consortium and highly relevant research entities

* all mentioned companies are partners of a **Additive Manufacturing** consortium project hosted by KEX AG and the research partners

A Powerful Team in Technology Research Institutes and Companies in and beyond Aachen

Your Contacts

Patrick Neudegger **Project Manager** patrick.neudegger@kex-ag.com Phone: +49 241 51038 613

KEX Knowledge Exchange AG

Campus-Boulevard 30 **5**2074 Aachen

www.kex-ag.com

